博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
机器学习-数据清洗
阅读量:6970 次
发布时间:2019-06-27

本文共 1923 字,大约阅读时间需要 6 分钟。

欢迎大家前往,获取更多腾讯海量技术实践干货哦~

本文由 发表

数据清洗

首先,为何需要对数据进行清洗

数据清洗的工作绝壁是非常枯燥的,做数据研究的的人绝对无法避开这个环节,其根本原因是因为我们从各种渠道拿到的数据可能会出现:

1、不合理的数据,你比如,样本中有些人的年龄超过了120岁,楼层的高度达到了1000层,以及其他的一些非常不合理的场景。

2、错误的类型,你比如,样例中,几乎所有的数据都是整形,然而,有一些是字符串类型,如果不进行处理,将这些数据直接喂给算法,一般情况下是要崩溃的。

3、计算机对于处理字符串类型比较吃力,有时候,需要我们将他转化为数字类型,这样就设计到一个映射关系,比如,样例性别,【男,女】,我们可以转化为1,2,房屋的类型【单间,一房一厅,二房一厅,三房一厅,商铺】可以对应的枚举出来,比如我在处理房屋朝向上的示例

#提取房屋的朝向def parse_orientation(row):    if '朝西南' in row:        return 1    elif '朝东北' in row:        return 2    elif '朝东' in row:        return 3    elif '朝南' in row:        return 4    elif '朝西北' in row:        return 5    elif '朝北' in row:        return 6    elif '朝东南' in row:        return 7    elif '朝南北' in row:        return 8    elif '朝西' in row:        return 9    else:        return 10

等等等等,我想说的是绝对还有很多你意想不到的场景,需要你耐心的打磨数据,将搜集到的原始数据,清洗成为可用的数据。

数据清洗需要掌握哪些黑科技

通常我们拿到的数据数据都可以简化为表格模型,无用你是xsl也好,csv亦或json数组也好,都可以利用pandas来读取,读取之后,接下来的工作基本上就是借助在pandas的一些api来做数据清洗工作了,如下,我读取了一份房价信息的数据表,这份数据当然是我自己根据上一篇文章,利用scrapy做了一个爬虫爬取的咯。

imgjupyter笔记

为了让我们能够更好的玩数据清洗,我也不吝啬的贡献出了一份非常全面的pandas的操作一份,以及后面你一定会用到一个万能的。

来来,简单的了解一下pandas的一些常用的api了,举例就用:

img示例数据一行

1、取子集常用操作

img取子集

其中,loc是支持按照列名字符串的方式来取子集,iloc支持的是使用数组索引(从0开始)的方式来取子集,通常,逗号前面是行相关的一些条件限制,逗号右边则是列相关的限制。比如,我取得

img我就取前两列

2、处理空白数据行

img处理空白数据

这种就很简单愉快了,一个api就可以删除或者填充有空白数据的样本了。

这个就不演示了,因为我是爬虫爬取数据,所以在爬取的过程中,我已经对数据进行了一些基础的处理,程序控制不可能出现空白数据了,所以,我也是建议,自己写爬虫去获取数据,这些减轻数据清洗环节的压力。

3、apply系列

apply其实有比较多兄弟,比如applymap,map,他们的能力各有不同,总的来说就是apply()是一种让函数作用于列或者行操作,applymap()是一种让函数作用于DataFrame每一个元素的操作,而map是一种让函数作用于Series每一个元素的操作,如下所示,我这里对ege列进行处理了一了,将数字和文本归一化为数字。

imgapply示例

实际上,这个操作完全可用map来做:

df['ege'] = df['ege'].map(parse_house_age)df.head(5)

结果完全一样,因为我们只取了一列。

数据清洗比较高级的方式,使用各种图表

1、使用散点图

img房屋总面积对应总价图

2、房价热力值图:

img房价区间热力图

图描述了房间分布区间,可以清洗看出一些问题。

3、频率直方图帮助我们迅速找到一些特例独行的猪,因为他出现的次数少嘛,不得不让人怀疑这种数据的真实性。

img利用直方图快速找出毛刺点

ok,总的来说,这个过程需要开动自己的脑经,把你拿到的原始数据,慢慢慢慢的,变成可以给你下面算法需要的数据。

相关阅读

此文已由作者授权腾讯云+社区发布,更多原文请

搜索关注公众号「云加社区」,第一时间获取技术干货,关注后回复1024 送你一份技术课程大礼包!

转载地址:http://npbsl.baihongyu.com/

你可能感兴趣的文章
我的权限系统设计实现MVC4 + WebAPI + EasyUI + Knockout(五)框架及Web项目的组件化...
查看>>
操作多了就容易忘记
查看>>
FMDB 基本使用
查看>>
bind和eval的区别
查看>>
sql 查找入职员工时间排名倒数第三(查找某一列特定排名)
查看>>
windows连接mac的mysql数据库
查看>>
UVALive - 6667 Longest Chain CDQ3维问题
查看>>
CodeForces round 520 div2
查看>>
微信开发(一)基于Wx-java的微信分享功能
查看>>
Redis整合Spring结合使用缓存实例(转)
查看>>
线程池的原理及实现(转)
查看>>
SSO(转)
查看>>
php几个比较高级的函数
查看>>
C#基础随手笔记之基础操作优化
查看>>
[android] 短信的广播接收者
查看>>
[javaSE] 反射-Class类的基本操作
查看>>
配置Eclipse编写HTML/JS/CSS/JSP页面的自动提示。
查看>>
生产者消费者
查看>>
[OO]ABAP OO 语法--实例看 "="与"?=" 的区别[转]
查看>>
为什么推荐Zookeeper作注册中心
查看>>